Nitric Oxide Donor Molsidomine Positively Modulates Myogenic Differentiation of Embryonic Endothelial Progenitors

نویسندگان

  • Mario Tirone
  • Valentina Conti
  • Fabio Manenti
  • Pier Andrea Nicolosi
  • Cristina D'Orlando
  • Emanuele Azzoni
  • Silvia Brunelli
چکیده

Embryonic VE-Cadherin-expressing progenitors (eVE-Cad+), including hemogenic endothelium, have been shown to generate hematopoietic stem cells and a variety of other progenitors, including mesoangioblasts, or MABs. MABs are vessel-associated progenitors with multilineage mesodermal differentiation potential that can physiologically contribute to skeletal muscle development and regeneration, and have been used in an ex vivo cell therapy setting for the treatment of muscular dystrophy. There is currently a therapeutic need for molecules that could improve the efficacy of cell therapy protocols; one such good candidate is nitric oxide. Several studies in animal models of muscle dystrophy have demonstrated that nitric oxide donors provide several beneficial effects, including modulation of the activity of endogenous cell populations involved in muscle repair and the delay of muscle degeneration. Here we used a genetic lineage tracing approach to investigate whether the therapeutic effect of nitric oxide in muscle repair could derive from an improvement in the myogenic differentiation of eVE-Cad+ progenitors during embryogenesis. We show that early in vivo treatment with the nitric oxide donor molsidomine enhances eVE-Cad+ contribution to embryonic and fetal myogenesis, and that this effect could originate from a modulation of the properties of yolk sac hemogenic endothelium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide enhances experimental wound healing in diabetes.

BACKGROUND Diabetes is characterized by a nitric oxide deficiency at the wound site. This study investigated whether exogenous nitric oxide supplementation with the nitric oxide donor molsidomine (N-ethoxycarbomyl-3-morpholinyl-sidnonimine) could reverse the impaired healing in diabetes. METHODS Wound healing was studied by creating a dorsal skin incision with subcutaneous polyvinyl alcohol s...

متن کامل

A perinatal nitric oxide donor increases renal vascular resistance and ameliorates hypertension and glomerular injury in adult fawn-hooded hypertensive rats.

Enhancing perinatal nitric oxide (NO) availability persistently reduces blood pressure in spontaneously hypertensive rats. We hypothesize that this approach can be generalized to other models of genetic hypertension, for instance those associated with renal injury. Perinatal exposure to the NO donor molsidomine was studied in fawn-hooded hypertensive (FHH) rats, a model of mild hypertension, im...

متن کامل

Therapeutic insight into molsidomine, a nitric oxide donor in streptozotocin-induced diabetic nephropathy in rats

BACKGROUND Diabetes-induced oxidative stress and hypertension play a major role in the development of nephropathy. Hence, the present study was undertaken to evaluate the protective effects of molsidomine, a nitric oxide donor in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats. MATERIALS AND METHODS Type 1 diabetes was induced through a single dose of STZ (52 mg/kg, i.p.) in ma...

متن کامل

Hemodynamic Forces Regulate Embryonic Stem Cell Commitment to Vascular Progenitors

Pluripotent embryonic stem can (ES) cells can differentiate into all cell lineages. During the process of embryonic development, ES cells are exposed to fluid flow or blood flow generated by the contracting heart. Absence of fluid flow results in the formation of abnormal cardiac chambers and valve formation. Thus, hemodynamic forces and ES cell differentiation to vascular progenitor cells (VPC...

متن کامل

Efficiency of aerosolized nitric oxide donor drugs to achieve sustained pulmonary vasodilation.

Inhalation of nitric oxide (NO) causes selective pulmonary vasodilation, but demands continuous supply of the gaseous agent. We investigated the suitability of aerosolization of NO-donor drugs for achieving sustained reduction of pulmonary vascular tone. In buffer-perfused rabbit lungs, stable pulmonary hypertension was achieved by continuous infusion of the thromboxane-analogue U46619. The NO-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016